Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Article in English | MEDLINE | ID: mdl-38631429

ABSTRACT

BACKGROUND: Adrenal steroids play important roles in early-life development. However, our understanding of the effects of perinatal adrenal steroids on the development of childhood asthma is incomplete. OBJECTIVE: To evaluate the associations between early-life adrenal steroid levels and childhood asthma. METHODS: Participants included the Infant Susceptibility to Pulmonary Infections and Asthma following Respiratory Syncytial Virus Exposure birth cohort children with untargeted urinary metabolomics data measured during early infancy (n = 264) and nasal immune mediator data measured concurrently at age 2 to 6 months (n = 76). A total of 11 adrenal steroid compounds were identified using untargeted metabolomics and 6 asthma-relevant nasal immune mediators from multiplex assays were a priori selected. Current asthma at ages 5 and 6 years was ascertained using validated questionnaires. Associations were tested using logistic and linear regression with confounders adjustment. RESULTS: Pregnenetriol disulfate (adjusted odds ratio [aOR] = 0.20, 95% CI = 0.06-0.68) and 3a,21-dihydroxy-5b-pregnane-11,20-dione-21-glucuronide (aOR = 0.34, 95% CI = 0.14-0.75) were inversely associated with childhood asthma at 5 and 6 years after multiple testing adjustment. There was a significant interaction effect of pregnanediol-3-glucuronide by biological sex assigned at birth (aOR = 0.11, 95% CI = 0.02-0.51, for those with female sex) on childhood asthma. Pregnenetriol disulfate was inversely associated with granulocyte-macrophage colony-stimulating factor (ß = -0.45, q-value = 0.05). 3a,21-dihydroxy-5b-pregnane-11,20-dione 21-glucuronide was inversely associated with interleukin [IL]-4 (ß = -0.29, q-value = 0.02), IL-5 (ß = -0.35, q-value = 0.006), IL-13 (ß = -0.26, q-value = 0.02), granulocyte-macrophage colony-stimulating factor (ß = -0.35, q-value = 0.006), and fibroblast growth factor-ß (ß = -0.24, q-value = 0.01) after multiple testing adjustment. CONCLUSION: The inverse association between adrenal steroids downstream of progesterone and 17-hydroxypregnenolone and the odds of childhood asthma and nasopharyngeal type 2 immune biomarkers suggest that increased early-life adrenal steroids may suppress type 2 inflammation and protect against the development of childhood asthma.

2.
Pediatr Pulmonol ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558514

ABSTRACT

OBJECTIVES: In adults, an isolated low FEV1 pattern (an FEV1 below the lower limit of normal with a preserved FVC and FEV1/FVC) has been associated with the risk of developing airway obstruction. Our objective was to examine the prevalence, stability, and clinical significance of an isolated low FEV1 pattern in the pediatric population. METHODS: We conducted a retrospective study of spirometries from children ages 6-21 years and categorized tests into spirometry patterns according to published guidelines and recent literature. In a subgroup of tests with an isolated low FEV1 pattern, we evaluated spirometry technique. We also examined the association of having a test with an isolated low FEV1 pattern with clinical markers of disease severity in a subgroup of children with cystic fibrosis (CF). RESULTS: The isolated low FEV1 pattern was uncommon across the 29,979 tests included (n = 645 [2%]). In the 263 children with an isolated low FEV1 pattern who had a follow-up test performed, the most frequent spirometry pattern at last test was normal (n = 123 [47%]). A primary diagnosis of CF was associated with increased odds of having at least one test with an isolated low FEV1 pattern (OR = 8.37, 95% CI = 4.70-15.96, p < .001). The spirometry quality in a subgroup of tests with an isolated low FEV1 pattern (n = 50) was satisfactory. In the subgroup of children with CF (n = 102), those who had a test with an isolated low FEV1 pattern had higher odds of using oral antibiotics in the last 12 months than those who had a normal pattern (OR = 3.50, 95% CI = 1.15-10.63, p = .03). CONCLUSIONS: The isolated low FEV1 pattern can occur repeatedly over time, usually transitions to a normal pattern, is not due to a poor spirometry technique, and could be clinically relevant in children with chronic lung diseases.

4.
J Allergy Clin Immunol Pract ; 12(4): 863-869, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38224872

ABSTRACT

Asthma is a clinically heterogeneous disease, and despite substantial improvements in therapies, there remains an unmet need for well-tolerated, effective treatments. Observational studies have demonstrated that alterations in the respiratory and gut microbiome are associated with the development of asthma and its severity. These findings are supported by preclinical models demonstrating that respiratory and gut microbes can alter airway inflammation. Therapeutic approaches to target the human microbiome have been increasingly applied to a wide range of acute and chronic diseases, but there are currently no microbiome-based therapeutics approved for the treatment of asthma. This clinical commentary addresses the future role of microbiome-based therapeutics in asthma management from both a pro and con perspective. We examine (1) the prospects for clinical studies demonstrating a causal relationship between the human microbiome and the severity of asthma; (2) the challenges and potential solutions for designing, testing, and implementing a microbiome-based therapeutic; and (3) the possibility of microbiome-based therapeutics for conditions comorbid to asthma. We conclude by identifying research priorities that will help determine the future of microbiome-based therapeutics for the management of asthma.


Subject(s)
Asthma , Gastrointestinal Microbiome , Microbiota , Humans , Asthma/therapy , Respiratory System , Inflammation
7.
Pediatrics ; 152(Suppl 2)2023 09 01.
Article in English | MEDLINE | ID: mdl-37656024

ABSTRACT

Patient-reported outcomes are based on patient (or caregiver) descriptions without direct measurement by a health care provider. To capture patient-reported outcomes, various patient-reported outcome measures (PROMs) have been created. Using PROMs has been linked to improved patient satisfaction, patient-provider communication, and clinical outcomes in many pediatric fields. Despite a long-standing history of utilizing PROMs for the evaluation and management of childhood asthma, pediatric pulmonologists lag behind other pediatric subspecialists in the use of PROMs. During the National Heart, Lung, and Blood Institute's "Defining and Promoting Pediatric Pulmonary Health" workshop, critical knowledge gaps and research opportunities in the use of PROMs for childhood respiratory health were reviewed. In particular, PROMs can be employed as screening tools in the general population for the primary or secondary prevention of pediatric lung diseases. Incorporating these PROMs into the pediatric primary care setting would be especially impactful. In addition, the use of PROMs for the evaluation and management of asthma suggests that they can be applied to other childhood respiratory diseases. Ongoing multicenter studies or national consortia that study pediatric lung diseases could be leveraged to conduct research designed to develop, validate, and assess the utility of PROMs to assess childhood respiratory health. Harnessing the electronic health record will be critical for the successful adoption of PROMs in children with lung diseases. Ultimately, an integrative approach to systematically address numerous barriers at the level of the provider, patient, and health care system will be needed to attain this goal and achieve sustainability.


Subject(s)
Asthma , Humans , Child , Asthma/diagnosis , Asthma/therapy , Communication , Electronic Health Records , Health Personnel , Patient Reported Outcome Measures
9.
Lancet ; 401(10389): 1669-1680, 2023 05 20.
Article in English | MEDLINE | ID: mdl-37086744

ABSTRACT

BACKGROUND: Early-life severe respiratory syncytial virus (RSV) infection has been associated with the onset of childhood wheezing illnesses. However, the relationship between RSV infection during infancy and the development of childhood asthma is unclear. We aimed to assess the association between RSV infection during infancy and childhood asthma. METHODS: INSPIRE is a large, population-based, birth cohort of healthy infants with non-low birthweight born at term between June and December, 2012, or between June and December, 2013. Infants were recruited from 11 paediatric practices across middle Tennessee, USA. We ascertained RSV infection status (no infection vs infection) in the first year of life using a combination of passive and active surveillance with viral identification through molecular and serological techniques. Children were then followed up prospectively for the primary outcome of 5-year current asthma, which we analysed in all participants who completed 5-year follow-up. Statistical models, which were done for children with available data, were adjusted for child's sex, race and ethnicity, any breastfeeding, day-care attendance during infancy, exposure to second-hand smoke in utero or during early infancy, and maternal asthma. FINDINGS: Of 1946 eligible children who were enrolled in the study, 1741 (89%) had available data to assess RSV infection status in the first year of life. The proportion of children with RSV infection during infancy was 944 (54%; 95% CI 52-57) of 1741 children. The proportion of children with 5-year current asthma was lower among those without RSV infection during infancy (91 [16%] of 587) than those with RSV infection during infancy (139 [21%] of 670; p=0·016). Not being infected with RSV during infancy was associated with a 26% lower risk of 5-year current asthma than being infected with RSV during infancy (adjusted RR 0·74, 95% CI 0·58-0·94, p=0·014). The estimated proportion of 5-year current asthma cases that could be prevented by avoiding RSV infection during infancy was 15% (95% CI 2·2-26·8). INTERPRETATION: Among healthy children born at term, not being infected with RSV in the first year of life was associated with a substantially reduced risk of developing childhood asthma. Our findings show an age-dependent association between RSV infection during infancy and childhood asthma. However, to definitively establish causality, the effect of interventions that prevent, delay, or decrease the severity of the initial RSV infection on childhood asthma will need to be studied. FUNDING: US National Institutes of Health.


Subject(s)
Asthma , Respiratory Syncytial Virus Infections , Female , Child , Infant , Humans , Respiratory Syncytial Virus Infections/epidemiology , Cohort Studies , Prospective Studies , Birth Cohort , Asthma/epidemiology , Asthma/etiology , Asthma/prevention & control , Respiratory Sounds/etiology , Risk Factors
10.
Microb Genom ; 9(2)2023 02.
Article in English | MEDLINE | ID: mdl-36820832

ABSTRACT

To date, little is known about the effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the coronavirus disease 2019 (COVID-19) pandemic, on the upper respiratory tract (URT) microbiota over time. To fill this knowledge gap, we used 16S ribosomal RNA gene sequencing to characterize the URT microbiota in 48 adults, including (1) 24 participants with mild-to-moderate COVID-19 who had serial mid-turbinate swabs collected up to 21 days after enrolment and (2) 24 asymptomatic, uninfected controls who had mid-turbinate swabs collected at enrolment only. To compare the URT microbiota between groups in a comprehensive manner, different types of statistical analyses that are frequently employed in microbial ecology were used, including ⍺-diversity, ß-diversity and differential abundance analyses. Final statistical models included age, sex and the presence of at least one comorbidity as covariates. The median age of all participants was 34.00 (interquartile range=28.75-46.50) years. In comparison to samples from controls, those from participants with COVID-19 had a lower observed species index at day 21 (linear regression coefficient=-13.30; 95 % CI=-21.72 to -4.88; q=0.02). In addition, the Jaccard index was significantly different between samples from participants with COVID-19 and those from controls at all study time points (PERMANOVA q<0.05 for all comparisons). The abundance of three amplicon sequence variants (ASVs) (one Corynebacterium ASV, Frederiksenia canicola, and one Lactobacillus ASV) were decreased in samples from participants with COVID-19 at all seven study time points, whereas the abundance of one ASV (from the family Neisseriaceae) was increased in samples from participants with COVID-19 at five (71.43 %) of the seven study time points. Our results suggest that mild-to-moderate COVID-19 can lead to alterations of the URT microbiota that persist for several weeks after the initial infection.


Subject(s)
COVID-19 , Microbiota , Humans , Adult , Middle Aged , SARS-CoV-2 , Respiratory System
11.
Curr Opin Allergy Clin Immunol ; 23(2): 111-118, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36730217

ABSTRACT

PURPOSE OF REVIEW: Severe asthma can carry significant morbidity and mortality for patients, and it places a burden on families and the healthcare system. Biologic agents have revolutionized the care of patients with severe asthma in recent years. Evidence surrounding some of these therapies is limited in the pediatric population, but recent studies show that they significantly improve asthma care when used appropriately. In this review, we discuss the biologic therapies currently approved to treat severe asthma in school-age children and adolescents. RECENT FINDINGS: Randomized controlled trials have been published in support of biologics in children and/or adolescents. These therapies have been shown to reduce the annual rate of severe asthma exacerbations by at least 40-50%, and some up to about 70%. Improvements in asthma control, lung function, oral corticosteroid use, and quality of life have also been demonstrated, although these vary by agent. Furthermore, these therapies have reassuring safety profiles in pediatric patients. SUMMARY: With three biologic agents approved for children ages 6-11 years and five approved for adolescents ages >12 years, it can be challenging to select one. The therapy should be chosen after careful consideration of the patient's asthma phenotype and biomarkers. Additional pediatric-specific clinical trials would be helpful in developing evidence-based guidelines on biologic therapies in this population.


Subject(s)
Anti-Asthmatic Agents , Asthma , Biological Products , Child , Humans , Anti-Asthmatic Agents/therapeutic use , Biological Products/therapeutic use , Quality of Life , Asthma/therapy , Biological Factors/therapeutic use
12.
J Virol ; 97(3): e0147222, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36815771

ABSTRACT

Respiratory syncytial virus (RSV) has a significant health burden in children, older adults, and the immunocompromised. However, limited effort has been made to identify emergence of new RSV genotypes' frequency of infection and how the combination of nasopharyngeal microbiome and viral genotypes impact RSV disease outcomes. In an observational cohort designed to capture the first infant RSV infection, we employed multi-omics approaches to sequence 349 RSV complete genomes and matched nasopharyngeal microbiomes, during which the 2012/2013 season was dominated by RSV-A, whereas 2013 and 2014 was dominated by RSV-B. We found non-G-72nt-duplicated RSV-A strains were more frequent in male infants (P = 0.02), whereas G-72nt-duplicated genotypes (which is ON1 lineage) were seen equally in both males and females. DESeq2 testing of the nasal microbiome showed Haemophilus was significantly more abundant in infants with RSV-A infection compared to infants with RSV-B infection (adjusted P = 0.002). In addition, the broad microbial clustering of the abundant genera was significantly associated with infant sex (P = 0.03). Overall, we show sex differences in infection by RSV genotype and host nasopharyngeal microbiome, suggesting an interaction between host genetics, virus genotype, and associated nasopharyngeal microbiome. IMPORTANCE Respiratory syncytial virus (RSV) is one of the leading causes of lower respiratory tract infections in young children and is responsible for high hospitalization rates and morbidity in infants and the elderly. To understand how the emergence of RSV viral genotypes and viral-respiratory microbiome interactions contribute to infection frequency and severity, we utilized an observational cohort designed to capture the first infant RSV infection we employed multi-omics approaches to sequence 349 RSV complete genomes and matched nasopharyngeal microbiomes. We found non-G-72nt-duplicated RSV-A genotypes were more frequent in male infants, whereas G-72nt-duplicated RSV-A strains (ON1 lineage) were seen equally in both males and females. Microbiome analysis show Haemophilus was significantly more abundant in infants with RSV-A compared to infants with RSV-B infection and the microbial clustering of the abundant genera was associated with infant sex. Overall, we show sex differences in RSV genotype-nasopharyngeal microbiome, suggesting an interaction host genetics-virus-microbiome interaction.


Subject(s)
Host Microbial Interactions , Microbiota , Nasopharynx , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Female , Humans , Infant , Male , Genotype , Microbiota/genetics , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus, Human/genetics , Sex Factors , Nasopharynx/microbiology , Host Microbial Interactions/physiology
13.
J Virol ; 97(2): e0147822, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36656015

ABSTRACT

Little is known about the relationships between symptomatic early severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load and upper airway mucosal gene expression and immune response. To examine the association of symptomatic SARS-CoV-2 early viral load with upper airway mucosal gene expression, we profiled the host mucosal transcriptome from nasopharyngeal swab samples from 68 adults with symptomatic, mild-to-moderate coronavirus disease 19 (COVID-19). We measured SARS-CoV-2 viral load using reverse transcription-quantitative PCR (RT-qPCR). We then examined the association of SARS-CoV-2 viral load with upper airway mucosal immune response. We detected SARS-CoV-2 in all samples and recovered >80% of the genome from 95% of the samples from symptomatic COVID-19 adults. The respiratory virome was dominated by SARS-CoV-2, with limited codetection of other respiratory viruses, with the human Rhinovirus C being identified in 4 (6%) samples. This limited codetection of other respiratory viral pathogens may be due to the implementation of public health measures, like social distancing and masking practices. We observed a significant positive correlation between SARS-CoV-2 viral load and interferon signaling (OAS2, OAS3, IFIT1, UPS18, ISG15, ISG20, IFITM1, and OASL), chemokine signaling (CXCL10 and CXCL11), and adaptive immune system (IFITM1, CD300E, and SIGLEC1) genes in symptomatic, mild-to-moderate COVID-19 adults, when adjusting for age, sex, and race. Interestingly, the expression levels of most of these genes plateaued at a cycle threshold (CT) value of ~25. Overall, our data show that the early nasal mucosal immune response to SARS-CoV-2 infection is viral load dependent, potentially modifying COVID-19 outcomes. IMPORTANCE Several prior studies have shown that SARS-CoV-2 viral load can predict the likelihood of disease spread and severity. A higher detectable SARS-CoV-2 plasma viral load was associated with worse respiratory disease severity. However, the relationship between SARS-CoV-2 viral load, airway mucosal gene expression, and immune response remains elusive. We profiled the nasal mucosal transcriptome from nasal samples collected from adults infected with SARS-CoV-2 during spring 2020 with mild-to-moderate symptoms using a comprehensive metatranscriptomics method. We observed a positive correlation between SARS-CoV-2 viral load, interferon signaling, chemokine signaling, and adaptive immune system in adults with COVID-19. Our data suggest that early nasal mucosal immune response to SARS-CoV-2 infection was viral load dependent and may modify COVID-19 outcomes.


Subject(s)
COVID-19 , Gene Expression , Respiratory Mucosa , SARS-CoV-2 , Viral Load , Adult , Humans , Chemokines/physiology , COVID-19/immunology , COVID-19/virology , Gene Expression/immunology , Immunity, Mucosal/immunology , Interferons/physiology , SARS-CoV-2/genetics , Respiratory Mucosa/immunology , Respiratory Mucosa/virology
14.
J Infect Dis ; 227(10): 1194-1202, 2023 05 12.
Article in English | MEDLINE | ID: mdl-36375000

ABSTRACT

BACKGROUND: Respiratory syncytial virus (RSV) is associated with acute respiratory infection. We sought to identify RSV variants associated with prolonged infection. METHODS: Among healthy term infants we identified those with prolonged RSV infection and conducted (1) a human genome-wide association study (GWAS) to test the dependence of infection risk on host genotype, (2) a viral GWAS for association with prolonged RSV infection using RSV whole-genome sequencing, (3) an analysis of all viral public sequences, (4) an assessment of immunological responses, and (5) a summary of all major functional data. Analyses were adjusted for viral/human population structure and host factors associated with infection risk. RESULTS: We identified p.E123K/D and p.P218T/S/L in G protein that were associated with prolonged infection (Padj = .01). We found no evidence of host genetic risk for infection. The RSV variant positions approximate sequences that could bind a putative viral receptor, heparan sulfate. CONCLUSIONS: Using analysis of both viral and host genetics we identified a novel RSV variant associated with prolonged infection in otherwise healthy infants and no evidence supporting host genetic susceptibility to infection. As the capacity of RSV for chronicity and its viral reservoir are not defined, these findings are important for understanding the impact of RSV on chronic disease and endemicity.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Humans , Infant , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/genetics , Birth Cohort , Genome-Wide Association Study , Respiratory Syncytial Virus, Human/genetics , Genetic Predisposition to Disease
15.
bioRxiv ; 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36052371

ABSTRACT

Little is known about the relationships between symptomatic early-time SARS-CoV-2 viral load and upper airway mucosal gene expression and immune response. To examine the association of symptomatic SARS-CoV-2 early viral load with upper airway mucosal gene expression, we profiled the host mucosal transcriptome from nasopharyngeal swab samples from 68 adults with symptomatic, mild-to-moderate COVID-19. We measured SARS-CoV-2 viral load using qRT-PCR. We then examined the association of SARS-CoV-2 viral load with upper airway mucosal immune response. We detected SARS-CoV-2 in all samples and recovered >80% of the genome from 85% of the samples from symptomatic COVID-19 adults. The respiratory virome was dominated by SARS-CoV-2, with limited co-detection of common respiratory viruses i.e., only the human Rhinovirus (HRV) being identified in 6% of the samples. We observed a significant positive correlation between SARS-CoV-2 viral load and interferon signaling (OAS2, OAS3, IFIT1, UPS18, ISG15, ISG20, IFITM1, and OASL), chemokine signaling (CXCL10 and CXCL11), and adaptive immune system (IFITM1, CD300E, and SIGLEC1) genes in symptomatic, mild-to-moderate COVID-19 adults, when adjusted for age, sex and race. Interestingly, the expression levels of most of these genes plateaued at a CT value of ~25. Overall, our data shows that early nasal mucosal immune response to SARS-CoV-2 infection is viral load dependent, which potentially could modify COVID-19 outcomes. AUTHOR SUMMARY: Several prior studies have shown that SARS-CoV-2 viral load can predict the likelihood of disease spread and severity. A higher detectable SARS-CoV-2 plasma viral load was associated with worse respiratory disease severity. However, the relationship between SARS-CoV-2 viral load and airway mucosal gene expression and immune response remains elusive. We profiled the nasal mucosal transcriptome from nasal samples collected from adults infected with SARS-CoV-2 during Spring 2020 with mild-to-moderate symptoms using a comprehensive metatranscriptomics method. We observed a positive correlation between SARS-CoV-2 viral load with interferon signaling, chemokine signaling, and adaptive immune system in adults with COVID-19. Our data suggest that early nasal mucosal immune response to SARS-CoV-2 infection was viral load-dependent and may modify COVID-19 outcomes.

16.
Front Immunol ; 13: 826666, 2022.
Article in English | MEDLINE | ID: mdl-35371035

ABSTRACT

Background: It is unknown whether RSV infection in infancy alters subsequent RSV immune responses. Methods: In a nested cohort of healthy, term children, peripheral blood mononuclear cells (PBMCs) were collected at ages 2-3 years to examine RSV memory T cell responses among children previously RSV infected during infancy (first year of life) compared to those RSV-uninfected during infancy. The presence vs. absence of infant RSV infection was determined through a combination of RSV molecular and serologic testing. Memory responses were measured in RSV stimulated PBMCs. Results: Compared to children not infected with RSV during the first year of life, children infected with RSV during infancy had lower memory T cell responses at ages 2-3 years to in vitro stimulation with RSV for most tested type-1 and type-17 markers for a number of memory T cell subsets. Conclusions: RSV infection in infancy has long-term effects on memory T cell responses. This is the first study to show the potential for RSV infection in infancy to have long-term effects on the immune memory irrespective of the severity of the infection. Our results suggest a possible mechanism through which infant RSV infection may result in greater risk of subsequent childhood respiratory viral morbidity, findings also relevant to vaccine development.


Subject(s)
Leukocytes, Mononuclear , Respiratory Syncytial Virus Infections , Child , Child, Preschool , Cohort Studies , Humans , Infant , Memory T Cells , T-Lymphocyte Subsets
17.
J Allergy Clin Immunol ; 150(3): 612-621, 2022 09.
Article in English | MEDLINE | ID: mdl-35283139

ABSTRACT

BACKGROUND: The impact of breast-feeding on certain childhood respiratory illnesses remains controversial. OBJECTIVE: We sought to examine the effect of exclusive breast-feeding on the early-life upper respiratory tract (URT) and gut microbiome, the URT immune response in infancy, and the risk of common pediatric respiratory diseases. METHODS: We analyzed data from a birth cohort of healthy infants with prospective ascertainment of breast-feeding patterns and common pediatric pulmonary and atopic outcomes. In a subset of infants, we also characterized the URT and gut microbiome using 16S ribosomal RNA sequencing and measured 9 URT cytokines using magnetic bead-based assays. RESULTS: Of the 1949 infants enrolled, 1495 (76.71%) had 4-year data. In adjusted analyses, exclusive breast-feeding (1) had an inverse dose-response on the ⍺-diversity of the early-life URT and gut microbiome, (2) was positively associated with the URT levels of IFN-α, IFN-γ, and IL-17A in infancy, and (3) had a protective dose-response on the development of a lower respiratory tract infection in infancy, 4-year current asthma, and 4-year ever allergic rhinitis (odds ratio [95% CI] for each 4 weeks of exclusive breast-feeding, 0.95 [0.91-0.99], 0.95 [0.90-0.99], and 0.95 [0.92-0.99], respectively). In exploratory analyses, we also found that the protective association of exclusive breast-feeding on 4-year current asthma was mediated through its impact on the gut microbiome (P = .03). CONCLUSIONS: Our results support a protective causal role of exclusive breast-feeding in the risk of developing a lower respiratory tract infection in infancy and asthma and allergic rhinitis in childhood. They also shed light on potential mechanisms of these associations, including the effect of exclusive breast-feeding on the gut microbiome.


Subject(s)
Asthma , Microbiota , Respiratory Tract Infections , Rhinitis, Allergic , Asthma/epidemiology , Asthma/etiology , Breast Feeding , Child , Female , Humans , Immunity , Infant , Prospective Studies , Respiratory System , Respiratory Tract Infections/complications , Respiratory Tract Infections/epidemiology , Rhinitis, Allergic/complications
18.
J Allergy Clin Immunol ; 149(3): 966-976, 2022 03.
Article in English | MEDLINE | ID: mdl-34534566

ABSTRACT

BACKGROUND: The risk factors determining short- and long-term morbidity following acute respiratory infection (ARI) due to respiratory syncytial virus (RSV) in infancy remain poorly understood. OBJECTIVES: Our aim was to examine the associations of the upper respiratory tract (URT) microbiome during RSV ARI in infancy with the acute local immune response and short- and long-term clinical outcomes. METHODS: We characterized the URT microbiome by 16S ribosomal RNA sequencing and assessed the acute local immune response by measuring 53 immune mediators with high-throughput immunoassays in 357 RSV-infected infants. Our short- and long-term clinical outcomes included several markers of disease severity and the number of wheezing episodes in the fourth year of life, respectively. RESULTS: We found several specific URT bacterial-immune mediator associations. In addition, the Shannon ⍺-diversity index of the URT microbiome was associated with a higher respiratory severity score (ß =.50 [95% CI = 0.13-0.86]), greater odds of a lower ARI (odds ratio = 1.63 [95% CI = 1.10-2.43]), and higher number of wheezing episodes in the fourth year of life (ß = 0.89 [95% CI = 0.37-1.40]). The Jaccard ß-diversity index of the URT microbiome differed by level of care required (P = .04). Furthermore, we found an interaction between the Shannon ⍺-diversity index of the URT microbiome and the first principal component of the acute local immune response on the respiratory severity score (P = .048). CONCLUSIONS: The URT microbiome during RSV ARI in infancy is associated with the acute local immune response, disease severity, and number of wheezing episodes in the fourth year of life. Our results also suggest complex URT bacterial-immune interactions that can affect the severity of the RSV ARI.


Subject(s)
Microbiota , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Humans , Infant , Respiratory Sounds/etiology , Respiratory System , Respiratory Tract Infections/complications
19.
Cell Rep Methods ; 1(6)2021 10 25.
Article in English | MEDLINE | ID: mdl-34790908

ABSTRACT

We developed a metatranscriptomics method that can simultaneously capture the respiratory virome, microbiome, and host response directly from low biomass samples. Using nasal swab samples, we capture RNA virome with sufficient sequencing depth required to assemble complete genomes. We find a surprisingly high frequency of respiratory syncytial virus (RSV) and coronavirus (CoV) in healthy children, and a high frequency of RSV-A and RSV-B co-detections in children with symptomatic RSV. In addition, we have identified commensal and pathogenic bacteria and fungi at the species level. Functional analysis revealed that H. influenzae was highly active in symptomatic RSV subjects. The host nasal transcriptome reveled upregulation of the innate immune system, anti-viral response and inflammasome pathway, and downregulation of fatty acid pathways in children with symptomatic RSV. Overall, we demonstrate that our method is broadly applicable to infer the transcriptome landscape of an infected system, surveil respiratory infections, and to sequence RNA viruses directly from clinical samples.


Subject(s)
Microbiota , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Child , Humans , Respiratory Syncytial Virus Infections/genetics , Virome/genetics , Respiratory Syncytial Virus, Human/genetics , Microbiota/genetics , Transcriptome/genetics
20.
Viruses ; 13(10)2021 10 13.
Article in English | MEDLINE | ID: mdl-34696488

ABSTRACT

Respiratory syncytial virus (RSV) is a seasonal mucosal pathogen that infects the ciliated respiratory epithelium and results in the most severe morbidity in the first six months of life. RSV is a common cause of acute respiratory infection during infancy and is an important early-life risk factor strongly associated with asthma development. While this association has been repeatedly demonstrated, limited progress has been made on the mechanistic understanding in humans of the contribution of infant RSV infection to airway epithelial dysfunction. An active infection of epithelial cells with RSV in vitro results in heightened central metabolism and overall hypermetabolic state; however, little is known about whether natural infection with RSV in vivo results in lasting metabolic reprogramming of the airway epithelium in infancy. To address this gap, we performed functional metabolomics, 13C glucose metabolic flux analysis, and RNA-seq gene expression analysis of nasal airway epithelial cells (NAECs) sampled from infants between 2-3 years of age, with RSV infection or not during the first year of life. We found that RSV infection in infancy was associated with lasting epithelial metabolic reprogramming, which was characterized by (1) significant increase in glucose uptake and differential utilization of glucose by epithelium; (2) altered preferences for metabolism of several carbon and energy sources; and (3) significant sexual dimorphism in metabolic parameters, with RSV-induced metabolic changes most pronounced in male epithelium. In summary, our study supports the proposed phenomenon of metabolic reprogramming of epithelial cells associated with RSV infection in infancy and opens exciting new venues for pursuing mechanisms of RSV-induced epithelial barrier dysfunction in early life.


Subject(s)
Respiratory Mucosa/metabolism , Respiratory Mucosa/virology , Respiratory Syncytial Virus Infections/metabolism , Child, Preschool , Cohort Studies , Epithelial Cells/metabolism , Epithelial Cells/virology , Female , Humans , Infant , Infant, Newborn , Male , Metabolomics/methods , Nasal Cavity/metabolism , Nasal Cavity/virology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Viruses/pathogenicity , Respiratory Tract Infections/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...